Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368
R. Sugadev, D. Balasundaresan,
K. K. Chacko, M. N.

Ponnuswamy* and M.
Sureshkumar

Department of Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India

Correspondence e-mail: mnpsy@hotmail.com

Key indicators
Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.058$
$w R$ factor $=0.176$
Data-to-parameter ratio $=14.9$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

9,10-Bis(3-hydroxy-3,3-diphenylprop-1-ynyl)anthracene N, N^{\prime}-dimethylformamide solvate

The X-ray crystal structure of the title compound, $\mathrm{C}_{47} \mathrm{H}_{37} \mathrm{NO}_{3}$, has been determined. The zigzag packing of the molecules is stabilized by intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds between the host and guest molecules, and intramolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions.

Comment

Knowledge of the host-guest interactions of tertiary acetylenic alcohol containing compounds crystallized with small molecules like ketones, amines and sulfoxides are useful in preparing optically active tertiary acetylenic alcohols (Toda et al., 1981, 1991; Johnson et al., 1992). We have prepared the novel title compound, (I), based on diphenylhydroxypropyne and anthracene units and cocrystallized with DMF, since DMF is known to be a good proton acceptor (Weber et al., 1991).

The Csp-Csp bond lengths [Fig. 1; C15-C16 and C30C31 1.190 (2) and 1.187 (2) Å, respectively] are comparable with the literature values (Venkataraman et al., 1997). The bond angles at C30 and C31 [C9-C30-C31 = 176.5 (2) $)^{\circ}$ and $\left.\mathrm{C} 30-\mathrm{C} 31-\mathrm{C} 32=175.8(2)^{\circ}\right]$ are slightly but significantly larger than the angles at C 15 and $\mathrm{C} 16[\mathrm{C} 10-\mathrm{C} 15-\mathrm{C} 16=$ $173.3(2)^{\circ}$ and $\left.\mathrm{C} 15-\mathrm{C} 16-\mathrm{C} 17=170.6(2)^{\circ}\right]$. The bond lengths $[\mathrm{N} 1 A-\mathrm{C} 1 A$ and $\mathrm{C} 1 A-\mathrm{O} 1 A 1.367$ (5) and $1.225(5) \AA$, respectively] and the sum of bond angles around $\mathrm{N} 1 A\left(360.0^{\circ}\right)$ in the guest molecule (DMF) indicate that the $\mathrm{N} 1 A$ atom is in

Received 8 May 2001
Accepted 19 November 2001
Online 11 January 2002

Figure 1
The molecular structure of (I) showing displacement ellipsoids at the 30\% probability level.
the $s p^{2}$-hybridized state and hence there is a slight delocalization of electrons in the $\mathrm{N} 1 A-\mathrm{C} 1 A-\mathrm{O} 1 A$ unit.

The complete zigzag packing of the crystal is mainly stabilized by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen-bonding interactions of the DMF molecule with the two hydroxyl groups of the host molecule. In addition, atom O1 is involved, as acceptor, in a $\mathrm{C}-\mathrm{H} \cdots$ O-type interaction.

Experimental

Single crystals were obtained by slow evaporation from a solution of the compound in DMF.

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0989 P)^{2}\right. \\
& \quad+1.1549 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.062 \\
& \Delta \rho_{\max }=0.61 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.37 \mathrm{e} \AA^{-3} \\
& \text { Extinction correction: } \text { SHELXL } 97 \\
& \text { Extinction coefficient: } 0.0049 \text { (4) }
\end{aligned}
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.058$
$w R\left(F^{2}\right)=0.176$
$S=1.08$
6910 reflections
465 parameters
H -atom parameters constrained

Table 1
Hydrogen-bonding geometry $\left(\AA{ }^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2-\mathrm{H} 2 \cdots \mathrm{O} 1 A$	0.82	2.06	2.863 (3)	168
C29-H29...O1	0.93	2.35	2.704 (3)	102
$\mathrm{C} 38-\mathrm{H} 38 \cdots \mathrm{O}$	0.93	2.33	2.689 (2)	102
$\mathrm{C} 2 \mathrm{~A}-\mathrm{H} 2 A 1 \cdots \mathrm{O} 1 A$	0.96	2.36	2.747 (5)	104
$\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{O} 1 A^{\mathrm{i}}$	0.82	2.04	2.865 (3)	180
$\mathrm{C} 2-\mathrm{H} 2 A \cdots \mathrm{O} 1^{\text {ii }}$	0.93	2.46	3.292 (2)	149

H atoms were fixed geometrically at calculated positions, each riding on the parent atom with an isotropic displacement parameter 1.2 (1.5 for methyl H atoms) times that of the parent atom.

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: SDP (Frenz, 1978); data reduction: CAD-4 Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ZORTEP (Zsolnai, 1995); software used to prepare material for publication: PARST (Nardelli, 1995).

Crystal data

$\mathrm{C}_{47} \mathrm{H}_{37} \mathrm{NO}_{3}$
$M_{r}=663.78$
Monoclinic, $P P_{1} / c$
$a=16.290(3) \AA \AA$
$b=11.837(2) \AA$
$c=19.426(4) \AA$
$\beta=104.11(3){ }^{\circ}$
$V=3632.8(12) \AA^{\circ}$
$Z=4$
$D_{x}=1.214 \mathrm{Mg} \mathrm{m}^{-3}$
Cu $K \alpha$ radiation
Cell parameters from 25
reflections
$\theta=5-20^{\circ}$
$\mu=0.59 \mathrm{~mm}^{-1}$
$T=293(2) \mathrm{K}$
Rectangular, yellow-brown
$0.53 \times 0.40 \times 0.23 \mathrm{~mm}$

Data collection

Enraf-Nonius CAD-4	$h=0 \rightarrow 19$
\quad diffractometer	$k=0 \rightarrow 14$
$\omega / 2 \theta$ scans	$l=-23 \rightarrow 22$
7151 measured reflections	3 standard reflections
6910 independent reflections	every 200 reflections
5927 reflections with $I>2 \sigma(I)$	frequency: 60 min
$R_{\text {int }}=0.015$	intensity decay: $<1.5 \%$
$\theta_{\max }=70.1^{\circ}$	

